Early effect in time-dependent, high-dimensional nonlinear dynamical systems with multiple resonances.

نویسندگان

  • Youngyong Park
  • Younghae Do
  • Sebastian Altmeyer
  • Ying-Cheng Lai
  • GyuWon Lee
چکیده

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under proper boundary conditions, we uncover the phenomenon of the early effect. Specifically, as a control parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances emerge at frequency values that are lower than those in the corresponding stationary system. The phenomenon is established by numerical characterization of physical quantities through the resonances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on the concept of instantaneous frequency. A simple formula is obtained which relates the resonance points in the time-dependent and time-independent systems. Our findings suggest that, in general, any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adiabatic parameter sweeping, in spite of a shift in the bifurcation point, which is of value to experimental studies of nonlinear dynamical systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration Analysis of a Nonlinear System with a Nonlinear Absorber under the Primary and Super-harmonic Resonances (TECHNICAL NOTE)

Abstract   In vibratory systems, linear and nonlinear vibration absorbers can be used to suppress the primary and super-harmonic resonance responses. In this paper, the behavior of a nonlinear system with a nonlinear absorber, under the primary and super-harmonic resonances is investigated. The stiffnesses of the main system and the absorber are cubically nonlinear and the dampers are linear. M...

متن کامل

Finite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay

In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...

متن کامل

The Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion

In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...

متن کامل

On dynamical tunneling and classical resonances.

This work establishes a firm relationship between classical nonlinear resonances and the phenomenon of dynamical tunneling. It is shown that the classical phase space with its hierarchy of resonance islands completely characterizes dynamical tunneling and explicit forms of the dynamical barriers can be obtained only by identifying the key resonances. Relationship between the phase space viewpoi...

متن کامل

Resonances, Radiation Damping and Instability in Hamiltonian Nonlinear Wave Equations

We consider a class of nonlinear Klein-Gordon equations which are Hamiltonian and are perturbations of linear dispersive equations. The unperturbed dynamical system has a bound state, a spatially localized and time periodic solution. We show that, for generic nonlinear Hamiltonian perturbations, all small amplitude solutions decay to zero as time tends to infinity at an anomalously slow rate. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2015